|
题:计算\(\;\displaystyle\lim_{n\to\infty}{\small\int_0^1\frac{nx^n}{1+x^n}}dx.\)i9> 解:\(\displaystyle\,{\small\int_0^1\frac{nx^n}{1+x^n}}dx\;\overset{t=x^n}{=\hspace{-3px}=}{\small\int_0^1\frac{\sqrt[n]{\ t}}{1+t}}dt\in\big({\small\int_a^1\frac{\sqrt[n]{a}}{1+t}dt,\int_0^1\frac{1}{1+t}dt}\big)\)z63 \(\therefore\quad\displaystyle {\large a}^{\frac{1}{\large n}}\ln{\small\frac{2}{1+a}}\le{\small\int_0^1\frac{nx^n}{1+x^n}dx}\le\ln 2\;\;\small(0< a< 1).\)'>u \(\qquad\)对此取\(\displaystyle\;\lim_{a\to 0^+}\,\lim_{n\to\infty}\,\)即得\(\;\;\displaystyle\lim_{n\to\infty}{\small\int_0^1\frac{nx^n}{1+x^n}}dx=\ln 2.\quad\small\square\)8II
| | |
|
|