|
[这个贴子最后由elim在 2021/01/12 11:44pm 第 1 次编辑]4j ©Elinkage数学论坛 -- Elinkage极酷超级论坛 g 题:分析 \(\ln x=2\sum \limits _{n=0}^\infty \frac{1}{2n+1} (\frac{x-1}{x+1})^{2n+1}\) 是否成立,何时成立.LtN 解:易见\({\small\;x\,\overset{\varphi(t)}{=\hspace{-5px}=}\,}\frac{1+t}{1-t}{\small\,\big(t\,\overset{\varphi^{-1}(x)}{=\hspace{-3px}=}}\frac{x-1}{x+1}\big)\)是\(\small(-1,1)\)到\(\small(0,\infty)\) 的双射.Km|Q@ \(\therefore\;\;\small\ln(x)=\ln(1+t)-\ln(1-t)=\sum\limits_{n=0}^{\infty}\frac{(-1)^{n-1}}{n}t^n+\sum\limits_{n=0}^{\infty}\frac{1}{n}t^n\)oJ7 \(\quad=\sum\limits_{n=0}^{\infty}\frac{2}{2n+1}t^{2n+1}=\sum\limits_{n=0}^{\infty}\frac{2}{2n+1}(\frac{x-1}{x+1})_.^{\small 2n+1}\scriptsize(x>0)\)p
| | |
|
|