|
题:求 $x(x+1)(x+2)(x+3)(x+4)=120$ 的根式解.B@ 解:$x(x+1)(x+2)(x+3)(x+4)-120$P $\qquad=(x-1)(x^4+11x^3+46x^2+96x+120)$OXPDo $\;\;$设$\;\,x^4+11x^3+46x^2+96x+120=(x^2+\frac{11}{2}x+A)^2-(Bx+C)^2$Q $\;\;\;=x^4+11x^3+(2A-B^2+\frac{121}{4})x^2+(11A-2BC)x+A^2-C^2$_ze3n& $\;\;\;=(x^2{\small+}(\frac{11}{2}{\small+B})x{\small+A+C})(x^2{\small+}(\frac{11}{2}{\small-B})x{\small+A-C})$Z $\;\;$则$\;B=\frac{11A-96}{2C},\;\;C^2=A^2-120,\;\;2A-\big(\frac{11A-96}{2C}\big)^2+\frac{121}{4}-46=0.$%zO\ $\;\;$整理得${\small\;A^3-23A^2+144A-207=0,\;\;A=}{\large\frac{23}{3}}+{\large\frac{2}{3}}{\small\text{Re}}\sqrt[{\Large 3}]{\large\frac{115+i9\sqrt{44907}}{2}}$[9O=f! $\;\;$是上方程使$\small\,B,\,C\,$皆为实数的唯一解.8Q,8 $\;\;$令$\;\theta=\arctan{\large\frac{9\sqrt{44907}}{115}},\;\;u=\sqrt{97}\cos\large\frac{\theta}{3},\;\;$则$\;A={\large\frac{23}{3}}+{\large\frac{2}{3}}u.$z $\;\;\small B=\sqrt{2A+(11/2)^2-46}={\large\frac{\sqrt{48u-15}}{6}},\;C={\large\frac{11A-96}{2B}}={\large\frac{22u-35}{\sqrt{48u-15}}}$8<z $\;\;$因此原方程的根为$\;x_0=1,$N>}+ % $\qquad x_{1,2}={\large\frac{-(\frac{11}{2}+{\small B})\pm\sqrt{(\frac{11}{2}+{\small B})^2\small-4(A+C)}}{2}}$!B# $\qquad\qquad={\large\frac{-33-\sqrt{48u-15}\pm i\sqrt{6}\sqrt{8u+5-\frac{225\sqrt{3}}{\sqrt{16u-5}}}}{12}}\underset{\,}{\,}$]?9S] $\qquad\qquad=-4.41473149115\ldots\pm i1.29458342150\ldots\underset{\,}{\,}$=ZSO $\qquad x_{3,4}={\large\frac{-(\frac{11}{2}-{\small B})\pm\sqrt{(\frac{11}{2}+{\small B})^2\small-4(A-C)}}{2}}$3, $\qquad\qquad={\large\frac{-33-\sqrt{48u-15}\pm i\sqrt{6}\sqrt{8u+5+\frac{225\sqrt{3}}{\sqrt{16u-5}}}}{12}}\underset{\,}{\,}$+s $\qquad\qquad=-1.08526850885\ldots\pm i2.11936680167\ldots$Hmv"VH
| | |
|
|