|
题:计算 $\displaystyle\sum_{n=1}^{\infty}\frac{1}{2^n(1+\sqrt[2^n]{2})}.$7y|6i^ 解:在等式\(\small\,\dfrac{2}{1-x^2}=\dfrac{1}{1+x}+\dfrac{1}{1-x}\,\)中取\(\,x=\sqrt[2^n]{2}\,\)得\(\,(h_n=2^{-n})\)7m*u \(\qquad\small\dfrac{1}{2^n(1+\sqrt[2^n]{2})}=\dfrac{1}{2^{n-1}(1-\sqrt[2^{n-1}]{2})}-\dfrac{1}{2^n(1-\sqrt[2^n]{2})}=\dfrac{h_{n-1}}{1-2^{h_{n-1}}}-\dfrac{h_n}{1-2^{h_n}}.\)! \(\therefore\quad\displaystyle\sum_{n=1}^{\infty}\frac{1}{2^n(1+\sqrt[2^n]{2})}={\small-1-}\lim_{n\to\infty}\frac{h_n}{1-2^{h_n}}={\small-1+}\lim_{h\to 0}\frac{1}{2^h\ln 2}=\dfrac{1}{\ln 2}\small-1.\):kDg
| | |
|
|